Erica Hutchins, PhD
Assistant Professor
Cell and Tissue Biology
School of Dentistry

The Hutchins Lab seeks to map how post-transcriptional regulation controls developmental pluripotency and cell fate decisions in vivo, using vertebrate neural crest as a model.

Show full bio (190 words) Hide full bio

Neural crest cells are an essential stem cell population in the vertebrate embryo. During development, these cells must undergo coordinated induction, specification, and epithelial—mesenchymal transition (EMT) events to migrate and ultimately develop into a wide range of cell types that contribute to the adult organism.

Dysregulated post-transcriptional regulatory linkages in neural crest can lead to congenital malformations and cancer in humans, and a thorough understanding of the mechanisms underlying these fundamental processes can provide new therapeutic targets for biomedical intervention.

By leveraging systems-level approaches and cutting-edge developmental biology techniques to understand how neural crest cell state transitions are achieved post-transcriptionally to drive cell fate choices, we can begin to understand how these programs fail during development or may be hijacked during disease.

The major research goals of our laboratory are: 1) To identify the post-transcriptional regulatory linkages controlling neural crest fate decisions across developmental time and space 2) To parse the intersection of intrinsic and extrinsic factors with post-transcriptional regulation during neural crest and nervous system development 3) To leverage post-transcriptional regulatory linkages controlling EMT and migration in neural crest and neural crest-derived cancers

Education & Training

Show all (3) Hide

  • Diversity, Equity, and Inclusion Champion Training University of California 08/2022
  • Postdoctoral Training Developmental Biology California Institute of Technology 07/2022
  • PhD Biology University at Albany, State University of New York 12/2013

Websites

Show all (1) Hide

Grants and Projects

Show all (2) Hide

Publications (13)

Top publication keywords:
Enteric Nervous SystemEpithelial-Mesenchymal TransitionWnt Signaling PathwayNeural CrestLamininChick EmbryoGene Expression Regulation, DevelopmentalHeterogeneous-Nuclear RibonucleoproteinsXenopus laevisAvian ProteinsBasement MembraneNeural TubeHeterogeneous-Nuclear Ribonucleoprotein KAxonsNuclear Localization Signals

Show all (8 more) Hide